
Workshop
  Testing in Jest



Hint for trainers

● Report each change or addition to the trainers’ Discord-Channel.

● Tell which Slide is affected, why the change is important and what 

benefit your change provides.

● Use the code-highlighting-app if you work with code-snippets.

● Use the following slide if you want to repeat certain topics of the 

workshop.

http://workshops-de.github.io/slides-code-highlighter/


unit vs. integration vs. e2e
testing



Unit Testing

￫ code level

￫ every component can be unit tested (!)

￫ isolated testing

￫ Every dependency will be mocked and stubbed



Integration Testing

￫ code level

￫ Testing a component with its dependencies

￫ Takes sometimes a lot of effort to implement

￫ If isolated unit test doesn’t make sense



E2E Testing

- User level (Browser)

- Browser robot

- Assertions against the document



Testing in React

- Unit tests (Jest)

- Component Testing

- Component tests (with @testing-library/react)

- Components (unit test)

- Screens (integration test)

- Snapshot tests

- End-to-end tests (Cypress)



Unit Tests
with Jest



Jest is a JavaScript test runner



Why / What you’ll learn

￫ Fast with parallel tests

￫ Zero-Configuration

￫ Everything you need built-in (e.g. code coverage, mocks, snapshot 

tests, …)



<code>Jest
Test method names should be sentences:

describe("BookListItem",() => {
  test("renders a book from a book prop", () => {
    // ...
  });
});

// ✓ BookListItem renders a book from a book prop



<code>Jest
Test method names should be sentences:

test("whether it will rain today", () => {
  expect(isRaining("today")).toBe(true);
});



Jest Basics

Test Suite: describe()   Test Suites can be nested!

Test Case: it() or test()

Setup: beforeEach()

Tear Down: afterEach()

Assert: expect()

Jest in comparison to “classic tests”:



Jest Matchers

● toBe()

● toEqual()

● toContain()

● toBeUndefined()

● toBeTruthy()

● toThrow()

￫ toBeGreaterThan()

￫ toBeLessThan()

￫ toBeCloseTo()

You can also create your own
matchers.

Matchers replace "assert_equal", "assert_..."



Code coverage

￫ statement coverage: how many of the statements in the script have 

been executed.

￫ 100% statement coverage implies 100% line coverage

￫ branch coverage: how many of the branches of control structures (e.g. 
if statements) have been executed.

￫ function coverage: how many of the functions defined have been 
called.

￫ line coverage: how many of lines of source code in the script have 

been tested.



Code coverage

Example output
code coverage comes in colors green, 
yellow and red as a quick visual feedback.



Test Driven Development (TDD)

FAIL

PASSREFACTOR

Write Test

Improve Code Write Code



Test Driven Development (TDD)

1. Write a test case and make sure it fails. (red)

2. Satisfy the test case with minimal effort. (green)

3. Improve/refactor your code…

a. Meet general code guidelines.

b. Make it readable and comprehensible.

c. Remove redundant code.

4. Verify that the test case is still passing. (green)



We teach.
workshops.de


