e

Testing In Jest

Hint for trainers

e Report each change or addition to the trainers’ Discord-Channel.
e Tell which Slide is affected, why the change is important and what
benefit your change provides.

e Use the code-highlighting-app if you work with code-snippets.

e Use the following slide if you want to repeat certain topics of the

workshop.

http://workshops-de.github.io/slides-code-highlighter/

unit vs. integration vs. e2e
testing

Unit Testing

> code level
> every component can be unit tested (!)
> |solated testing

> Every dependency will be mocked and stubbed

Integration Testing

> code level
> Testing a component with its dependencies
> Takes sometimes a lot of effort to implement

> |f isolated unit test doesn’t make sense

E2E Testing

- User level (Browser)
- Browser robot

- Assertions against the document

Testing in React

- Unit tests (Jest)
- Component Testing
- Component tests (with Rtesting-library/react)
- Components (unit test)
- Screens (integration test)
- Snapshot tests

- End-to-end tests (Cypress)

Unit Tests
with Jest

Jest is a JavaScript test runner

o
¥

Why / What you’ll learn \

> Fast with parallel tests

> Zero-Configuration

> Everything you need built-in (e.g. code coverage, mocks, snapshot

tests, ...)

Jest

Test method names should be sentences:

describe("BookListItem",() => {
test("renders a book from a book prop", () => {
/] ...
1)
1)

// v BookListItem renders a book from a book prop

Jest

Test method names should be sentences:

test("whether it will rain today", () => {
expect(isRaining("today")).toBe(true);

1)

Jest Basics

Jest in comparison to “classic tests™:

Test Suite: describe() Test Suites can be nested!
Test Case: it() or test()

Setup: beforeEach()

Tear Down:; aftterEach()

Assert: expect()

Jest Matchers

Matchers replace "assert_equal”, "assert_..."

toBe() > toBeGreaterThan()

toEqual() > toBeLessThan()

toContain() > toBeCloseTo()

toBeUndefined()

toBeTruthy() You can also create your own
matchers.

toThrow()

>

Code coverage

statement coverage: how many of the statements in the script have

been executed.
> 100% statement coverage implies 100% line coverage

branch coverage: how many of the branches of control structures (e.g.
if statements) have been executed.

function coverage: how many of the functions defined have been
called.

line coverage: how many of lines of source code in the script have

been tested.

Code coverage

code coverage comes in colors green,

Example output Yellow and red as & quick visual feedback.

| % Stmts | % Branch | % Funcs | % Lines

All files
common/util
leapYear.ts
test-utils.tsx
components/BookList
index.tsx
components/BookListItem
index.tsx
components/Counter
index.tsx

Test Driven Development (TDD)

Write Test

REFACTOR <&

Improve Code Write Code

Test Driven Development (TDD)

1. Write a test case and make sure it fails. (red)
2. Satisfy the test case with minimal effort. (green)

3. Improve/refactor your code...

a. Meet general code guidelines.
b. Make it readable and comprehensible.

c. Remove redundant code.

4. \Verify that the test case is still passing. (green)

W
We teach.

workshops.de

